
Discovering Machine-Specific Code Improvements

Technical Report

CM

to

<
I

Q
<

S. L. Graham

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-82-C-0235

November 15, 1981 - December 30, 1985

DTIC
\ELECTE

\;\ APK2 11986

E

a«
CD

_J

Arpa Order No. 4031

146]

t ./LL iV--'- '"■
i e.. ^

^6 4
0^4

/
I

I
Discovering Machine-Specific Code Improvements

Peter B. Kessler

1. Abstract

A compiler construction tool has been designed and built that automates much of the case
analysis necessary to exploit special purpose instructions on a target machine. Given a suitable
description of the target machine, the analysis identifies instruction sequences that are equivalent
to single instructions. During code generation, these equivalences can be used to avoid inefficient
sequences in favor of more efficient instructions.
A working prototype of the instruction set analyser needed in the framework outlined by
[Giegerich 83] is presented. In contrast to the work presented in [Davidson and Fräser 80, 84],
machine descriptions are analysed entirely during compiler construction (i.e., once per compiler),
rather than during code generation (M-xlMh_time_the compiler is used). [RKessler 84] describes
such a system for discovering equivalent instructions for instruction sequences of length 27 The
techniques presented here can identify instruction sequences of arbitrary length that are
equivalent to single instructions.

This analysis has been applied to the descriptions of two machines, and the results have been used
to replace hand-written case analysis routines in an otherwise table driven code generator,
[Henry 84].

2. Motivation

The translation of a programming language onto a target architecture requires analyses of both
the language and the architecture. Much of the analysis of programming languages is now
formalised and incorporated in compiler construction tools for the "front-ends" of compilers
[Lesk and Schmidt 75, Johnson78]. Analysis of a target architecture by construction tools for the
"back-ends" of compilers is of at least two kinds. It is sufficient to discover an implementation of
each language construct on the target architecture [Henry 84]. Additional analysis may discover
features of the architecture that can be exploited to generate more efficient code. This paper
describes a method of automating such additional analysis.
Often a target architecture contains general purpose instructions and, in addition, special purpose
instructions that perform the same operations for a restricted set of operands (for example,
addition versus increment). Such special purpose instructions are often faster or smaller than the
equivalent more general instructions. A code generator that avoids less efficient sequences in
favor of more efficient equivalent instructions produces better code. The analysis of what
restrictions must hold to use special purpose instructions is tedious and prone to error if done by
hand, and is susceptible to automation. Such analysis takes a suitable machine description and
discovers when sequences of general purpose instructions are equivalent to special purpose
instructions. One miy think of the analysis as imposing a set of constraints on general purpose
instructions that make them equivalent to a special purpose instruction.

8. Scope
This paper describes a novel technique for identifying three kinds of idiom», set idioms, binding
idioms, and composite idioms (I use the term idiom as an analogy to idioms in natural
languages: phrases, particular to the language, that are used in place of more general terms.)
A $et idiom is a special purpose instruction that can be used to replace a general purpose
instruction when one (or more) operand of the general purpose instruction has a value from a
particular (machine-specific) set. For example, an increment-by-l instruction may be a set idiom
for a general addition instruction when one of the addends of the addition has the value 1. The
increment example restricts the operand to a particular value though many architectures have
instructions to perform operations with an operand from a small set of values.

Binding idtonu refer to special purpose instructions that peribnn the same operation as more
general purpose instructions when two (or more) operands of the general instruction reference the
same storage location. By choosing a suitably general operand addressing notation, one can
model a large class of popular operand addressing schemes.
A eompotite idiom is an instruction that performs the same computations as a sequence of
instructions. For example, many architectures have instructions for use at the ends of loops.
Such an instruction might add a step value to an index, compare the uidex against a limit value,
and branch on the result of the comparison. Special purpose loop instructions are often preferable
to separate addition, comparison, and branch instructions.

Often these three types of semantic restrictions must be considered together to discover
equivalent code sequences in a target architecture. For instance, in the previous example, the
loop control instruction might only increment the index value by 1, as opposed to allowing
unrestricted addition. In addition, the same operand must be tested as was incremented for the
sequences to be equivalent.

4. Decompoaition of Instruction Descriptions

Idioms are identified by imposing constraints on instruction sequences so that they perform the
same computation as a single instruction from the target machine. That is, given any single
instruction, I identify all the other (reasonable) sequences of code that can be replaced by that
instruction. This process is repeated for each instruction on the target machine, yielding a list of
all the constrained equivalences. The assumption here is that the single instructions of the target
machine are implemented efficiently. This assumption is verified by comparing the costs of the
alternatives.

The identification of idioms is driven by the general classes of idioms given above and the
particulars of instructions on the target machine. If there is an instruction on the target machine
that adds small constants, a search will he made for more general addition instructions that can
be restricted to add small constants. The search for idioms is not driven by rules like "look for
instructions that add small constants", or "look for instruction sequences for the ends of loops".

4.1. An Example

As an example, consider the problem of generating VAX-111 code for the source fragment:
foo :— foo + 1;
If foo = 0 then ...

That is, an increment of a variable by 1, followed by a comparison of that variable to 0. A naive
code generator might generate separate, unrestricted, instructions for addition and comparison:

addlS $1,foo,foo •■ foo — Joo + 1
empl foo,$0 -- cc-x «— foo » 0

The sequence addlS (three operand long integer addition) followed by empl (two operand long
integer comparison) with operands constrained as in the example above is equivalent to the
VAX-11 instruction:

Inel foo -- foo «— foo + 1; cc-x «— foo » 0

(one operand long integer increment by 1). The latter sequence is both shorter and faster than
the former, and so should be preferred. The constraints that produce this equivalence can all be
discovered by examining a suitable description of the VAX-11 architecture.
The derivation of constraints on equivalence is done during compiler construction. All properties
of the target machine that affect equivalence are considered during this analysis, leaving only
properties of the program to be checked at compile time. For example, the fact that addlS and

or

/iV'i.

1 VAX-11 ■• a trftdtmark of Digit»] Equipment Corporation.

Ib'Jt Inn/

l'ihülty Codes

■'il and/or
Special

Incl both do long integer addition is discovered »t compiler construction time, w is the required
reuse of the operand as shown in the example above. Whether the operands in a particular
program obey those constraints cannot be checked until compile time.

4.2. Machine Deacriptions

The effect of the VAX-11's one operand long integer incrementrby-1 instruction, Incl, can be
described by the sequence of computations:

i-dest«- i-dest + 1;
cc-n «- i-dest < 0;
cc-i «- i-dest —= 0;
cc-v «- overflow(i-dest +1);
cc-c «- carry(i-dest + 1);

where 'i-dest* is a reference to the operand of the instruction, and the various 'cc's are the
condition codes that the VAX-11 sets during moet arithmetic instructions. (Many details of the
instructions have been suppressed in these descriptions in an attempt at clarity.) Similarly, the
three operand unrest, -ted long integer addition instruction, addlS, can be described by:

a-dest *- a-8rc2 + a^srCji
cc-n «- a-dest < 0;
cc-i *- a-dest «- 0;
cc-v «- overflow(aHU-c9 + a-src,);
cc-c «- carry(a-srcl. + t-src,);

and the two operand long integer compare instruction, cmpl, can be described by:

cc-n •- c-srCj < c-src8;
cc-i «- c-8rc1 — c-src2;
cc-v — FALSE;
cc-c •- FALSE;

My analysis does not rely on semantics associated with most operators in the machine
descriptions; the majority of the analysis considers only the syntax of the descriptions. The
compiler writer has the task of using the same notation for the same operations, and
distinguishing operations by using distinct symbols for each. The only semantics required for the
examples in this paper are the sequencing of computations (via the ';' operator, which is used in
this paper in place of the order-dependent and order-independent separators available in the real
description language), assignment (represented by the '«—' operator), and references to operands
and constants (which in reality require some syntax, but in these examples should be apparent
from the content).

Note that simple syntactic comparison of instruction descriptions is not sufficient, since
architectures rarely have multiple instructions that perform exactly the same computations.
Rather, the syntactic mismatches are used to identify semantic restrictions that must be imposed
to achieve equivalence. Where a syntactic mismatch identifies a property of the program that can
be constrained to achieve equivalence, that constraint is recorded during compiler construction
and is checked at compile time.

4.8. An Example Decomposition

Consider the decomposition of an incl instruction into the sequence addlS followed by cmpl.
Decomposition proceeds from the end of an instruction description towards the beginning. Each
instruction on the target machine is examined to see if it can be constrained to match the tail of
the incl. Among those instructions is the cmpl instruction, which can be constrained to match
the condition code settings of the incl instruction. The remaining unmatched portion of the incl
instruction is the addition of 1. The decomposition algorithm again searches the target machine
description for instructions that perform additions. Among those instructions is the addlS
instruction, with appropriate constraints on its operands. In this way the incl instruction is

"decompoeed" into (among other Mqueneet) an addlS followed by a cmpl

The preceding description glasses over many details in the hope of conveying the intuition behind
decomposition. Most of the details have to do with the imposition of constraints, and are
explained below.

In the comparison of the condition code settings of the inel instruction against those in the empl
instruction, several mismatches occur. For example, the computation

cc-n •- i-dest < 0;

from the Inel syntactically matches the computation
cc-n ♦- c-srCj < c-8rc2;

from the empl, except for the references to the operands. The mismatch of 'i-dest* against
'c-src^ records the constraint that the destination of the Inel must be the same as the first source
operand of the empl. This is an example of an operand binding constraint. The mismatch of '0'
against 'c-srCj' records the constraint that the second source of the empl must be the constant 0.
These constraints are rediscovered (but not further constrained) by the examination of the setting
of'cc-«'.

The settings of 'cc-v' and 'cc-c' cannot be made equivalent by constraining operands. However, if
*cc-v' and "cc-c' could be shown to be dead during code generation, then the discrepancy in the
instruction descriptions would be irrelevant and could be ignored during compiler construction.
Thus the matching of the assignments to 'cc-v' and 'cc-c' records the constraint that these values
must be dead for the equivalence to be valid.
All that remains to be covered of the Inel instruction is the long word addition. The examination
of the target machine instructions discovers that addlS performs long word addition and attempts
to extend the decomposition by comparing the description of addlS with the remainder of the
Inel. The assignments to the condition codes by the following empl instruction will cause the
condition codes to be dead at the prepended addlS instruction, and so the condition code settings
from the addlS description may be pruned before the addlS is matched to the remainder of the
Inel. The match of

i-dest •— i-dest + 1;

from the Inel, against
a-dest ♦- a-src2 -f a-src,;

from the addlS, derives the constraints that (I) the destinations of the inel and addlS must be
the same, (2) that the destination of the Inel must be the same as the second source operan J of
the addlS, and (3) that the first source operand of the addlS must be the constant i. These
constraints, together with the ones derived above, are sufficient to ensure the equivalence of the
two instruction sequences.

5. Discusaion

'nstruction sequences may be extended to arbitrary lengths in the attempt to decompose an
h.«traction. This is a major contribution of the decomposition technique. The complexity of the
a jalysis process is exponential in the number of instructions on the target machine, with the
degree of the exponential depending on the lengths of the sequences found to be equivalent. The
sequences do not grow very long, since most architectures do not include extremely complex
instructions (that can be decomposed by this algorithm). A performance improvement is achieved
by matching the "tails" of sequences only once. For example, once empl has been determined to
match the tail of Inel, any prepended instructions, like addlS, only examine the unmatched
remainder of the Inel. In addition, trial extensions that fail (due to mismatches of the
architecture or unsatisfiable constraints on the programs) are not extended further. Thus, the
number of sequences considered in practice is consi
The algorithm demonstrated above works from the end of the instruction towards the beginning.
A more straightforward technique is to proceed forward through the instruction descriptions,

u»ing code generation techniques to discover Alternative implementations. Forward decomposition
is too "greedy" to find certain decompositions, however. Consider the forward decomposition of
Inel. The first round of the algorithm would match Incl with (among other instructions) addlS.
However, addlS can be constrained to completely match Inel, as an examination of the
descriptions will reveal. Why should forward decomposition ever consider appending an cmpl
instruction when the Inel can be completely matched by addlS? (Note that no classification of
"redundant test" instructions is possible s priori).

The descriptions of the machine include the descriptions of the computations performed by
addressing modes. Thus decomposition may discover that computations implicit in operand
addressing may be used to replace explicit instructions. For example a move-effective-address
instruction with a source operand that adds a constant displacement to a register can be used as
an alternate implementation for the addition of a constant, provided the other addend is a
register.

The decomposition algorithm discovers code sequences that perform equivalent computations.
The sequences are often not equivalent in cost (the difference in costs is the motivation for
identifying otherwise equivalent sequences!). Both code space and execution time must be
considered. Accurate costs for sequences cannot be compared during analysis at compiler
construction time, however. In part this is because instructions are analyied for correspondence
of operands, without necessarily restricting operands to particular addressing modes. Therefore,
the costs for operands can not be accurately determined until a particular program is compiled.
As an extreme case, the VAX-11 has equivalent code sequences where the choice of which sequence
is best depends on the compile time value of an operand displacement. Thus, cost functions can
not be analysed during compiler construction.

6. Related Work
Recent grammar-based code generator generation techniques rely on hand-written case analysis to
select instructions with semantic restrictions. For example, [Henry 84] requires hand-written
routines to use these instructions. [Ganapathi 80] uses attribute-influenced parsing to provide a
framework for hand-written attribute functions that select instructions with semantic restrictions.
The work presented here automates the analysis of the target machine for opportunities to exploit
such instructions. The results of such an analysis can be used after code generatioi to improve
generated code, or can be incorporated as attribute tests during code selection.

The techniques proposed in this paper fit into the framework outlined in [Giegerich 83]. Giegerich
proposes that machine descriptions be examined during compiler construction for instances of
"standard rules" of code generation. Rather than using a list of such axioms, my technique uses
the instructions of the target machine as starting points for discovering equivalent instruction
sequences.

Much of Giegerich's analysis discovers the effects of instructions on the data flow of programs,
and in particular, occasions when the data flow is invariant (or at least still "safe") in spite of
transformations of instructions. I borrow some of Giegerich's data flow results in my algorithms.
Previous examinations of machine descriptions for special purpose instructions have composed
instruction sequences for analysis. Using composition, sequences of presumed inefficient code are
constructed, and then the matnine description is consulted to find a more efficient implementation
of that code. Davidson and Fräser use sequences that occur during compilation, and perform the
analysis of the target machine at that time [Davidson and Fräser 80]. Robert Kessler describes a
system that considers sequences composed during compiler construction [RKessler 84]. Analysis of
the target machine description during compiler construction allows a more extensive search for
equivalent instructions, with, however, less precise information about particular programs.
Davidson and Fräser have recently taken to caching the results of their analysis, thus they can
avoid rediscovering equivalences during a single compilation, as well as between several
compilations [Davidson and Fräser 84].
Using the composition algorithms, sequences must be composed before the machine description is
examined. Thus, the number of sequences examined is an exponential function of the number of

target machine instructions, whose degree is the length of the sequences considered. The
composition algorithms are limited in practice to considering pairs of instructions. The
composition analysis thus finds only 1-to-l and 2-to-l equivalences.

7. Implementation

I have constructed a tool to analyse machine descriptions by decomposition. The current
organisation generates a table of instruction sequences, their equivalents, and the constraints on
the equivalence. This table is used to retarget an improver of assembler code for a retargetable
compiler. The same information could be used to affect the selection of efficient code in the code
generator itself, rather than transforming the output of the code generator. Our standard
retargetable code generator normally makes use of band-written code improvement routines
[Henry 84]. The table driven improver replaces those routines, making the compiler more easily
retargeted to new architectures.

I have used this tool to analyse two architectures, the VAX-11 and the M68000 The analysis of
the VAX-11 takes just over 2 VAX-ll/750 cpu hours and discovers almost 1300 idioms. The
analysis of the M68000 takes just under 4 VAX-ll/750 cpu hours and discovers over 500 idioms.
The longest sequences discovered were of length 3 on both architectures.
The analyzer exploits several properties of the machine descriptions to reduce the amount of work
required of it. For example, families of instructions that vary only in the type of their operands
can often be analysed only once. In addition, many instructions in a target architecture can be
shown to perform unique operations, and thus there is no need to decompose them or to use them
in the decomposition of other instructions.

8. Conclusion
The addition of retargetable code improvers to the suite of compiler construction tools improves
the overall quality of the compilers. The uniform application of such tools provides a standard of
code generator quality, which makes it possible to compare machine architectures. The
availability of compilers that can exploit special purpose instructions frees machine architects to
design such instructions into new machines.

This paper describes a novel technique for analysing machine descriptions for opportunities to use
an interesting class of special purpose instructions. This work is an addition to the growing
collection of compiler construction tools. The use of such tools simplifies the retargeting of a
compiler.

9. References
[Davidson and Fräser 80]

J. W. Davidson and C. W. Fräser, "The Design and Application of a Retargetable Peephole
Optimizer", ACM Transaction« on Programming Language» and Syttem», Vol. 2, No. 2, pp.
101-202, April 1080.

[Davidson and Fräser 84]
J. W. Davidson and C. W. Fräser, "Automatic Generation of Peephole Optimisations",
Proceedings of the ACM SIGPLAN 1084 Symposium on Compiler Construction, Montreal,
Quebec, SIGPLAN Notices, Montreal, Quebec, Vol. 10, No. 6, pp. 111-116, June 1084.

[Ganapathi 80]
M. Ganapathi, "Retargetable Code Generation and Optimisation Using Attribute
Grammars", PhD. Dissertation, Technical Report #406, Computer Science Department,
University of Wisconsin, Madison, 1080.

[Giegerich 83]
R. Giegerich, "A Formal Framework for the Derivation of Machine-Specific Optimizers",
ACM Transaction» on Programming Language» and System», Vol. 5, No. 3, pp. 478-408,
July 1083.

[Henry 84]
Robert R. Henry, "Grabnm-Glknville Code Generatore", PhD Disserution, Computer
Science Division, EECS, University of California, Berkeley, Report No. UCB/CSD 84/184,
May, 1984.

(Johnson 78]
S. C. Johnson, "YACC: Yet Another Compiler^Compiler", Bell Laboratories Murray Hill,
NJ, July 1978.

(RKessler 84]
Robert R. Kessler, "Peep — An Architectural Description Driven Peephole Optimizer",
Proceedings of the ACM SIGPLAN 1984 Symposium on Compiler Construction, Montreal,
Quebec, SIGPLAN Notices, Montreal, Quebec, Vol. 19, No. 6, pp. 106-110, June 1984.

[Leak and Schmidt 75]
M. E. Leak and E. Schmidt, "LEX — A Lexical Analyser Generator", Computer Science
Technical Report TR-39, Bell Laboratories Murray Hill, NJ, October, 1975.

